Creme de la creme enrichment:

Exploiting the synergy between structure-based (SBDD) and ligand-based (LBDD) drug design.

March 11, 2005

Steven M. Muskal Chief Executive Officer Eidogen-Sertanty, Inc.

About Eidogen-Sertanty

- Formed from the merger of Eidogen & Sertanty
- Knowledge-based drug discovery solutions provider
 - Target-Based informatics solutions
 - Target Informatics Platform (TIP™)
 - Ligand-Based informatics solutions
 - Kinase Knowledgebase
 - LUCIA™
 - Chemical Intelligence Platform (ChIP™)

Why a Knowledge Driven Approach?

The amount of SAR and structural data available in 2005 dwarfs what was available in the mid 90's

Leveraging earlier successes means reduced costs

Utilizing knowledge means higher success rates

"Loading the dice of discovery" with knowledge

Sertanty Eidogen-Sertanty

Integrating Target- and Ligand-based methods

What follows:

Enhancing VLS enrichment through combining orthogonal scoring measures from both target-side and ligand-side

Predicting target cross-reactivity via binding site similarity

> Automated generation of novel inhibitors via recombination of co-crystallized ligands

Eidogen-Sertanty Target-based Informatics

Target Informatics PlatformTM (TIPTM)

Eidogen Visualization Environment (EVETM)

ContactSorter

- Compare Site-Ligand Interaction fingerprints **LigandCross**

- Create novel ligands via recombination of co-crystals

🌙 Eidogen Sertanty

Target-based: SiteSorter

Novel algorithm for assessing binding site physicochemical similarity

- Compare binding sites both within the target family as well as *between* target families

- Explore Target hopping opportunities
- Rationalize unexpected SAR similarity via binding site similarity

Target-based: ContactSorter

ContactSorter – Re-rank docked ligands relative to other known ligandtarget interactions found in co-crystallized examples

File Filtering Window	Help							
Sequences Chains	Sites Site-Lig	and Contacts						
Description					Site-	Ligand Contacts	Similarity Dendrogram	
Site Name	Locus	Description	Contact Similarity ❤					
pdb1di8/s381224 (chain A)	CDK2_HUMAN	DTQ: 4-[3-HYDROXYAN	-	.I.GT.V.A.	. <mark>к. v</mark> .	.FEFLHOD.K.QN.L.AD.L		
pdb1q3w/s480622 (chain A)	KG3B_HUMAN	ATU: 9-NITRO-5,12-DIH	0.61	I V A	κv	LDYVP-T R ON L CD E		
pdb1gii/s398693 (chain A)	CDK2_HUMAN	1PU: 1-(5-0X0-2,3,5,9	0.68	IG-VA	к <mark>v</mark>	FEHVHOD T ON L AD -	· /	
pdb1urw/s493669 (chain A)	CDK2_HUMAN	11P: 2-[4-(N-(3-DIMETH	0.60	I V A	к <mark>v</mark>	FEFLHQD K ON L AD -		
pdb1gij/s399286 (chain A)	CDK2_HUMAN	2PU: 1-(5-0X0-2,3,5,9	0.62	I <u>G</u> - V A	κv	FEHVHOD T ON L AD -		
pdb1e9h/s382695 (chain C)	CDK2_HUMAN	INR: 2',3-DIOXO-1,1',2',	0.67	I G- V A	κv	F <u>EFLHQD</u> K QNLADE		
pdb1e9h/s382694 (chain A)	CDK2_HUMAN	INR: 2',3-DIOXO-1,1',2',	0.63	I V A	κv	FEFLHQD K ON L AD E		
pdb1v0o/s503736 (chain A)	CC2H_PLAF7	INR: 2',3-DIOXO-1,1',2',	0.62	I V A	K V	F <u>ehl</u> - <u>o</u> d k <mark>o</mark> n l ad -		
pdb1v0o/s503737 (chain B)	CC2H_PLAF7	INR: 2',3-DIOXO-1,1',2',	0.62	IG-VA	κv	FEHL-OD KON LAD -		
pdb1fw/s400601 (chain C)	CDK2_HUMAN	107: 4-[(7-0X0-7H-THI	0.64	<u>I</u> V A	K <mark>V</mark>	FEFLHOD K ON L AD E		
pdb1vyz/s503568 (chain A)	CDK2_HUMAN	N5B: N-(5-CYCLOPROP	0.67	I V A	к <mark>v</mark>	FEFL-QD K Q- L AD -		
pdb1jvp/s424348 (chain P)	CDK2_HUMAN	LIG: 3-PYRIDIN-4-YL-2,	0.71	I V A	к <mark>v</mark>	FEFLHOD K ON L AD -		
pdb1uki/s522815 (chain A)	MK08_XENLA	537: 2,6-DIHYDROANT	0.70	I V A	к <mark>і</mark>	M <u>elmdan</u> - s- <mark>v</mark> L		
pdb1pmv/s472060 (chain A)	MK10_HUMAN	537: 2,6-DIHYDROANT	0.67	I V A	к <mark>і</mark>	M <u>e</u> l <u>mdan</u> Q s- <mark>V</mark> L		6000
pdb1ckp/s370369 (chain A)	CDK2_HUMAN	PVB: PURVALANOL, _/1	0.60	I V A	кν	FEFL-QD K Q- L AD -		Γ
pdb1ke5/s424829 (chain A)	CDK2_HUMAN	LS1: N-METHYL-4-{[(2	0.63	I V A	к <mark>v</mark>	F <u>EFL</u> -QD K QN L AD -		
pdb1pf8/s453902 (chain A)	CDK2_HUMAN	SU9: (3Z)-3-(1H-IMIDAZ	0.63	I V A	к <mark>v</mark>	FEFL-QD K QN L AD -		
			000000000000000000000	• 0000000000000000000000000000000000000				•
				KEY	Y: \	<u>rellow</u> = hydrophobic	Purple = H-bond + electrostatic	
					F	Red = electrostatic	Underline = backbone interaction	۱
					E	Blue = hydrogen bond		
				-			🌖 Eid	0

Target-based: ContactSorter – VLS analysis

• Load docked compounds and compare contacts to reference ligands

The Thermy Window Her	9 =======					
Sequences Chains Sites	Site-Ligand C	Contacts			1 <u></u>	
	Des	cription	O and a st	Deathing	Site-Ligand Contacts	Similarity Dendrogram
Site Name	Locus	Description	Contact Similarity 92	Docking Score St		
ndb1m52/s449830 (chain A)	ABL MI VAB	P17: 6-(2.6-DICHLOBO		-	T.G. OV V AVE F M V T TERMINGN D T. ADF	
pdb1m52/s449830_137 (chain A)	ABL MLVAB	9871	0.68	29.340	LG OV V AVK E M V I TEEMTYGN D I. ADE	
pdb1m52/s449830 138 (chain A)	ABL MLVAB	9871 2	0.69	27.810	LG OY V AVK E M V I TEFMTYGN D L ADF	
pdb1m52/s449830_136 (chain A)	ABL_MLVAB	50004919_5	0.71	32.010	LG OY V AVK E M V I TEFMTYGN D L ADF	
pdb1m52/s449830_135 (chain A)	ABL_MLVAB	50004919_4	0.75	32.580	LG QY V AVK E M V I TEFMTYGN D L ADF	h
pdb1m52/s449830_43 (chain A)	ABL_MLVAB	50004902_3	0.66	31.190	LG QY V AVK E M V I TEFMTYGN D L ADF	
pdb1m52/s449830_153 (chain A)	ABL_MLVAB	9872_9	0.69	31.980	LG ON V AVK E M V I TEFMIYGN D L ADF	
pdb1m52/s449830_145 (chain A)	ABL_MLVAB	9872	0.65	33.820	LG QY V AVK E M V I TEFMTYGN D L ADF	
pdb1m52/s449830_147 (chain A)	ABL_MLVAB	9872_3	0.69	33.090	LG QY V AVK E M V I TEFMTYGN D L ADF	
pdb1m52/s449830_26 (chain A)	ABL_MLVAB	11115_2	0.54	22.540	LG QY V AVK E M V I TEFMTYGN D L ADF	
pdb1m52/s449830_27 (chain A)	ABL_MLVAB	11115_3	0.57	21.600	LG QY V AVK E M V I TEFMTYGN D L ADF	
pdb1m52/s449830_141 (chain A)	ABL_MLVAB	9871_5	0.57	26.010	LG QY V AVK E M V I TEF <u>MT</u> YGN D L A <u>DF</u>	h
pdb1m52/s449830_67 (chain A)	ABL_MLVAB	2425902_5	0.57	35.950	LG QY V AVK E M V I TEFMTYGN D L ADF	
pdb1m52/s449830_68 (chain A)	ABL_MLVAB	2425902_6	0.50	35.330	L <u>G</u> Q <mark>Y V A</mark> VK E M V I TEFMTYGN D L A <u>DF</u>	
pdb1m52/s449830_25 (chain A)	ABL_MLVAB	11115	0.38	23.240	L <u>G</u> QY V AVK E M V I TEFMTYGN D L ADF	
pdb1m52/s449830_64 (chain A)	ABL_MLVAB	2425902_2	0.57	37.440	LG QY V AVK E M V I TEFMTYGN D L ADF	
pdb1m52/s449830_19 (chain A)	ABL_MLVAB	7233	0.55	26.340	LG QY V AVK E M V I TEFMTYGN D L ADF	
pdb1m52/s449830_21 (chain A)	ABL_MLVAB	7233_3	0.48	25.740	L <u>G</u> Q <mark>Y V A</mark> VK E M V I TEFMTYGN D L ADF	
pdb1m52/s449830_20 (chain A)	ABL_MLVAB	7233_2	0.59	25.840	LG QY V AVK E M V I TEFM <u>TYG</u> N D L ADF	
pdb1m52/s449830_65 (chain A)	ABL_MLVAB	2425902_3	0.57	36.820	LG QY V AVK E M V I TEFMTYGN D L ADF	
pdb1m52/s449830_63 (chain A)	ABL_MLVAB	2425902	0.54	37.780	LG QY V AVK E M V I TEFMTYGN D L ADF	
pdb1m52/s449830_66 (chain A)	ABL_MLVAB	2425902_4	0.55	36.640	L <u>G</u> QY V AVK E M V I TEFMTYGN D L ADF	
pdb1m52/s449830_139 (chain A)	ABL_MLVAB	9871_3	0.62	27.350	L <u>G</u> QY V AVK E M V I TEFMTYGN D L ADF	
pdb1m52/s449830_31 (chain A)	ABL_MLVAB	50004869_3	0.70	30.430	LG QY V AVK E M V I TEFMTYGN D L ADF	
pdb1m52/s449830_111 (chain A)	ABL_MLVAB	50004917_3	0.67	29.260	L <u>G</u> QY V AVK E M V I TEFMTYGN D L ADF	
pdb1m52/s449830_157 (chain A)	ABL_MLVAB	50004862_3	0.68	32.560	L <u>G QY V AVK E M V I TEFM</u> TY <u>G</u> N D L ADF	
pdb1m52/s449830_58 (chain A)	ABL_MLVAB	50004924_3	0.68	32.690	LG QY V AVK E M V I TEFMTYGN D L ADF	h [] [
pdb1m52/s449830_42 (chain A)	ABL_MLVAB	50004902_2	0.70	31.840	LG QY V AVK E M V I TEFMTYGN D L ADF	
pdb1m52/s449830_54 (chain A)	ABL_MLVAB	50004884_2	0.68	30.960	LG ON V AVK E M V I TEFMTYGN D L ADF	

- Re-rank docking poses using Contact Similarity scores
- Group molecules by binding mode
- Compare contacts to multiple structure conformations

- Understand which compounds are binding to which conformation (e.g. DFG-out vs. DFG-in conformations of ABL)

👤 Eidogen Sert anty

Target- and Ligand-based Enrichment - ABL

Consensus ranking of ligand- and target-based methods gives best enrichment

Binding site cross-reactivity prediction

Kinase Sequence Similarity Experimental SAR Data GSK3B GSK3B CDK4 CSNK1A1/CK1a CDK2 CHEK1/CHK1 CDK5 PRKG1/PKG1 CSNK1A1/CK1a PRKACA/PKACa **10 Most Similar by** CDC2 PRKCA/PKCa PRKG1/PKG1 PRKCB1/PKCb **Binding Site %ID** CHEK1/CHK1 PRKCG/PKCg MYLK2/skMLCK PRKCD/PKCd RKCA/PKCa PRKCE/PKCe PRKCG/PKCg PRKCH/PKCh MYLK2/skMLCK PRKCD/PKCd MAPK1/Erk2 PRKCE/PKCe MAPK3/Erk1 PRKCB1/PKCb MAPK9/JNK2 PRKCH/PKCh MAPK11/p38b **PRKACA/PKACa** MAPK14/p38a ERBB2/HER2/ErbB SRC EGFR **PRKCG/PKCg** MAP2K1 FYN = LYN MAPK9/JNK2 LCK CHEK1/CHK1 RAF1 ABL1 FYN INSR INSR **PRKCE/PKCe** GF1R PRKACA/PKACa CSF1R/FMS ZAP70 **PRKCH/PKCh** KIT PDGFRA PDGFRB **PRKCD/PKCd** FGFR1 FLT1 IGF1R FGFR1 FLT4 KDR PDGFRB TEK/T **ZAP70** MYLK2/skMLCK LYN MAP2K CSF1R/FMS ERBB2/HER2/ErbB2 MAP2K1/MEK1 FLT4 EGFR FLT1 ZAP70 **PRKCA/PKCa** ABL1 WEE1 KDR RAF1 MAPK1/Erk2 CDK2 TEK/TIE2 CDC2 MAPK3/Erk1 CDK5 MAPK14/p38a CDK4 MAPK11/p38b

Global annotation of binding site similarity leads to more accurate predictions of cross-reactivity

71%

67%

63%

63%

63%

63%

63%

63%

58%

Integrating Target-Based and Ligand-Based: LigandCross

CDK2 co-crystal sites

Generate novel ligands by recombining known binding fragments from co-crystal structures

Load multiple co-crystal sites

Overlay sites

ITERATION 1

DTQ_I1P

👤 Eidogen Sert anty

Recombine ligands

LigandCross

Leverage co-crystal and docked structural information to build libraries of likely binders

LigandCross + ContactSorter

File Filtering Window Help Sequences Chains Sites Site-Ligand Contacts Description Site-Ligand Contacts Similarity Dendrogram Contact Site Na... Locus Description Similarity 🗇 pdb1di.... CDK2... DTQ: 4-[3-HYDROXYANILINO]... .I.GT.V.A.K.V.FEFLHQD.K.QN.L.AD.L pdb1di... CDK2... DTQ_I1P_1 0.85 I -- V A K V FEFLHOD - O- L AD L CDK2... ((DTQ I1P 2) 107 1) ALH 1 0.80 pdb1di... V A K V FEFLHOD K -N L AD 1 0.67 pdb1di.. CDK2... ((((DTQ I1P 2) 107 1) LS1. V A K V FEFLHOD K - L AD pdb1di. CDK2... (((DTQ I1P 2) 107 1) LS1. 0.71 V A K V FEFLHOD ndb1di. CDK2. ((DTQ 11P 2) 107 1) LS1 0.68 V A K V FEFLHO ndb1di. CDK2. ((DTQ 11P 2) 107 1) LS1 0.71 pdb1di. CDK2. (((DTQ |1P 2) 107 1) LS1 0.73 V A K V FEFLHOD K pdb1di. CDK2.. (((DTQ I1P 2) 107 1) LS1 0.67 V A K V FEFLHOI pdb1di. CDK2... (((DTQ I1P 2) 107 1) LS1 0.71 V A K V FEFTHOD K pdb1di. CDK2... (((DTQ |1P 2) 107 1) LS1 0.68 V A K V FEFTHO pdb1di. CDK2... ((((DTQ_I1P_2)_107_1)_LS1. 0.64 pdb1di. CDK2... (((DTQ_I1P_2)_107_1)_LS1. 0.63 FEFLHOD pdb1di... CDK2... (DTQ_I1P_2)_107_2 0.67 FEFTHOD pdb1di... (((DTQ_I1P_2)_107_1)_LS1 0.67 CDK2... FEFTHOD 0.62 pdb1di... CDK2... ((((DTQ I1P 2) 107 1) LS1 FEFLHQD pdb1di... CDK2... ((((DTQ I1P 2) 107 1) LS1 0.65 FEFLHQD pdb1di... CDK2... ((DTQ_I1P_2)_107_1)_LS1_2 0.58 pdb1di... CDK2... ((((DTQ_I1P_2)_107_1)_LS1 0.58 ndh1di CDK2... (((DTQ_11P_2)_107_1)_1.81 0.57 CDK2... (DTQ_I1P_2)_107_1 0.64 ndh1di AD I CDK2... ((DTQ_I1P_2)_107_1)_I1P_1 ndh1di 0.54 AD I CDK2... (((DTQ_I1P_2)_107_1)_LS1 0.46 ndh1di - V FEFLHOD -N L AD CDK2... ((((DTQ_I1P_2)_107_1)_LS1. pdb1di.. 0.50 - V F<mark>EFLHQD</mark> K -N L AD CDK2... ((DTQ_I1P_2)_107_1)_ALH_2 pdb1di.. 0.43 V A - V F<mark>E</mark>F<mark>LHO</mark>D K -N L AD pdb1di... CDK2... ((DTQ_I1P_2)_107_1)_LS1_1 0.70 I G-VAKVF<u>EFLHOD</u>K -N L AD I CDK2... DTQ_I1P_2 ndb1di 0.74 I G- V A K V F<u>EFLHO</u>D K -N <mark>L</mark> AD L pdb1di... CDK2... (((DTQ I1P 2) 107 1) LS1. 0.58 I -- V A K V F<u>EFLHQD</u> K -- L AD I

Sample CDK2 LigandCross molecules after 3 iterations (15 starting co-crystals)

Fast, scalable method suitable for any target where multiple co-crystal or docked structures are available

LigandCross → ChIP

ChIP with LigandCross(ed) molecules to create synthetically accessible libraries with likely binding affinity toward target(s) of interest

• Forward, prospective exploration of existing and newly coupled synthetic strategies

• "Mixing-n-matching" synthetic protocols to generate novel, synthetically accessible molecules

Future Directions

• Combine docking, ContactSorter, and eScreen data *across multiple targets* to further enhance enrichment factors

Customizable ContactSorter scoring tuned for specific targets or compound classes

 Integrate technologies to produce automated feedback loop of: compounds → eScreen → Dock → Contact Similarity analysis → Automated recombination of ligands → ChIP Simulation → Design focused, synthetically accessible libraries

Acknowledgements

- Kevin Hambly
- Stephan Schürer
- Joe Danzer
- Brian Palmer
- Aleksandar Poleksic
- Derek Debe

