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Overview of talk
• Introduction

• Similarity searching when multiple 
bioactive reference structures are 
available

• Turbo similarity searching, based on using 
nearest-neighbours 

• Conclusions



Similarity searching: I

• Use of a similarity measure to determine 
the relatedness of an active target, or 
reference, structure to each structure in a 
database 

• The similar property principle means that 
high-ranked structures are likely to have 
similar activity to that of the target

• Similarity searching hence provides an 
obvious way of following-up on an initial 
active



Similarity searching: II
• Similarity searching using a single 

target structure now a common feature 
in chemoinformatics software systems

• How to search with multiple, structurally 
unrelated target structures, e.g., 
• Diverse hits from HTS

• Compounds from a public database (e.g.,  
MDL Drug Data Report and the World 
Drugs Index)

• Competitor compounds



Comparison of search 
techniques: I

• Given a set of active molecules, how can a 
database be similarity-ranked in order of 
decreasing probability of activity?

• Extensive simulated virtual screening 
experiments on the MDL Drug Data 
Report (MDDR) database, using 
• Molecules represented by 2D fingerprints 

(UNITY fingerprints in the initial experiments)
• Inter-fingerprint similarity calculated using the 

Tanimoto Coefficient



Comparison of search 
techniques: II

• Several different techniques were tested
• Hert, J. et al.,  “Comparison of fingerprint-

based methods for virtual screening using 
multiple bioactive reference structures.” J. 
Chem. Inf. Comput. Sci., 44, 2004, 1177. 

• Best results obtained by
• Combining the rankings resulting from 

separate searches using data fusion

• Approximation of the binary kernel 
discrimination method for machine learning



Comparison of search 
techniques: III 

• Here, focus on data fusion, where 
combine different rankings of the same 
sets of molecules

• Two basic approaches
• Generate rankings from the same molecule 

using different similarity measures 
(similarity fusion)

• Generate rankings from different molecules 
using the same similarity measure but 
different molecules (group fusion)
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Group fusion rules

• Fusion of scores or fusion of ranks 
(normal in similarity fusion)  

• SUM rule : add the scores (ranks) from 
the similarity lists for some database 
molecule and then re-rank the resulting 
sums

• MAX rule : re-rank using the maximum 
score (minimum rank) attained in any of 
the lists 



Experimental details

• MDDR with ca. 102K molecules
• 11 activity classes 

• 10 sets of 10 randomly chosen compounds 
from each activity class

• All similarities calculated using the 
Tanimoto Coefficient

• Best group-fusion results obtained using 
combination of scores and the MAX rule
• Comparison with average and best single-

molecule searches 



Use of multiple 
reference structures
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Comparison of 2D 
similarity measures

• Extensive comparative experiments
• Scitegic ECFP_4 best of the 14 types of 2D fingerprint

• Tanimoto best of the 12 types of similarity coefficients

• Whittle, M. et al., “Enhancing the effectiveness of 
virtual screening by fusing nearest-neighbour lists: A 
comparison of similarity coefficients” J. Chem. Inf. 
Comput. Sci., 44, 2004, 1840.

• Hert, J. et al., Topological descriptors for similarity-
based virtual screening using multiple bioactive 
reference structures.” Org. Biomol. Chem., 2, 2004, 
3256



Effect of structural 
diversity

• Some evidence to suggest that the 
enhancement was greatest with the most 
diverse sets of actives.

• More detailed experiments where chose  
10 MDDR activity classes that 
• Contained at least 50 molecules
• Had the smallest, or the largest or the median  

mean pair-wise Tanimoto similarity (similar 
results if use numbers of scaffolds)



Recall for group fusion 
and similarity searching
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Variation in relative recall 
with mean pair-wise 
similarity
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Turbo similarity 
searching: I 

• Similar property principle: nearest 
neighbours are likely to exhibit the same 
activity as the reference structure

• Group fusion improves the identification 
of active compounds

• Potential for further enhancements by 
group fusion of rankings from the 
reference structure and from its  
assumed active nearest neighbours



Turbo similarity 
searching: II
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Probability of activity for 
nearest neighbours
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Experimental details

• MDDR data set of 11 activity classes and 
102K structures as used previously
• In all, 8294 actives in the 11 classes, with 

(turbo) similarity searches being carried out 
using each of these as the reference structure

• ECFP_4 fingerprints/Tanimoto coefficient

• MAX group fusion on similarity scores

• Increasing numbers of nearest neighbours 



Numbers of nearest 
neighbours
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Upper and lower bound 
experiments

30

35

40

45

50

55

60

65

70

SS TSS-100 Upperbound
(reference +
active NNs
among the
100NNs)

Lowerbound
(inactive

NNs among
the 100
NNs)

Upperbound
(reference +
100 active

NNs)

Lowerbound
(100

inactive
NNs)

R
ec

al
l a

t 5
%



Rationale for upper 
bound results

• The true actives in the set of assumed actives 
yield significant enhancements in performance

• The true inactives in the set of assumed actives 
have little effect on performance

• Taken together, the two groups of compounds 
yield the observed net enhancement

• Hert, J. et al., “Enhancing the effectiveness of 
similarity-based virtual screening using nearest-
neighbour information.” J. Med. Chem., in the 
press.



Use of machine-
learning methods for 
similarity searching: I

• Turbo similarity searching uses group fusion to 
enhance conventional similarity searching

• Machine learning is a more powerful virtual 
screening tool than similarity searching
• But requires a training-set containing known actives 

and  inactives
• Given an active reference structure, a training-

set can be generated from
• Using the k nearest neighbours of the reference 

structure as the actives
• Using k randomly chosen, low-similarity compounds 

as the inactives



Use of machine-
learning methods for 
similarity searching: II
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Initial experiments: I

• Three machine-learning techniques in the 
second stage
• Substructural analysis

Best results with the R4 probabilistic weight

• Binary kernel discrimination

• Support vector machine

• MDDR dataset as used previously, with 
100-molecule training-sets



Initial experiments: II
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Additional experiments: I

• Initial results rather disappointing, but 
some improvements noted with the most 
diverse datasets

• Further experiments with the set of 10 
MDDR activity classes with the lowest 
mean pair-wise Tanimoto similarity



Additional experiments: II
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Conclusions: I

• Fingerprint-based similarity searching 
using a known reference structure is  
long-established in chemoinformatics

• When small numbers of actives are 
available, group fusion will enhance 
performance when the sought actives 
are structurally heterogeneous



Conclusions: II

• Can also enhance conventional similarity 
search, even if there is just a single active, 
by assuming that the nearest neighbours 
are also active

• Can be effected in two ways
• Use of group fusion to combine similarity 

rankings (overall best approach)
• Use of substructural analysis to compute 

fragment weights (best with highly 
heterogeneous sets of actives)
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