

Getting it right - keeping it right. Registration Systems for 21st Century Chemistry

Graham Lock Research Data Management

Why do we "Register" compounds ?

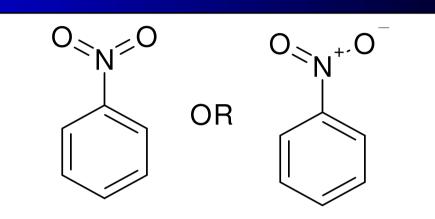
- Track potential intellectual property
- Manage biological and physico-chemical data
- Produce a reliable structure-searchable database
- Allow calculation of properties
- Enable SAR work to be performed

The changing nature of Registration

- High throughput chemistry
- Quantitative chiral chromatography
- Electronic submission / registration

What do we mean by "Registration"?

- Standardise the representation of chemical substances
- Arrange data into a hierarchy
- Check novelty of a compound
- Assign different identifiers to different chemical structures

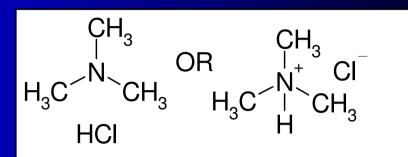


Standardise the representation of chemical substances - Nitro groups

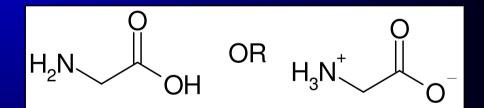
Commonly occurring

No standardisation within the industry

(but neither is really correct - really need a delocalised bond type)


GSK Registry converts all nitro groups to the "pentavalent" form.

Standardise the representation of chemical substances - Salts and charges

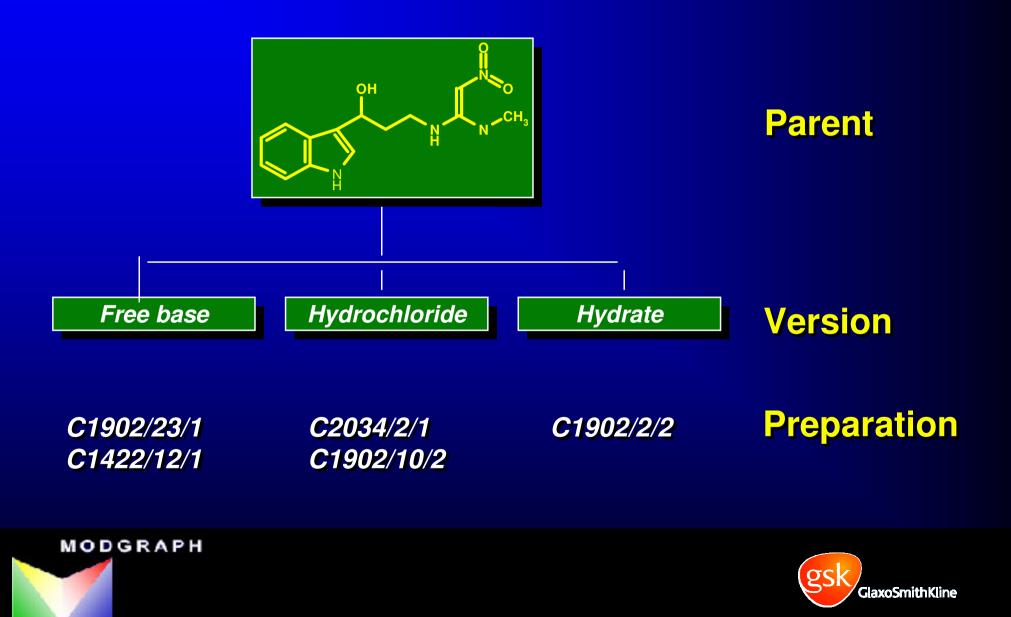

 Salts - represent with proton transfer or not ?

(Do you standarise on an uncharged or proton transfer representation ?)

Zwitterionic structures

GSK Registry only accepts the uncharged representation.

(Do you standarise on an uncharged or proton transfer representation ?)


What do we mean by "Registration"?

- Standardise the representation of chemical structures
- Arranging data into a hierarchy
- Check novelty of a compound
- Assign different identifiers to different chemical structures

GSK Registration Hierarchy

The GSK Registry Number

- Different chemical compounds and stereoisomers get different PCNs
- Different salts, solvates and isotopic labels of the same compound get different version codes

Parent Compound Number (incremented number) ↓ GSK123456 A

> Version code (sequential letter, starting at "A")

What do we mean by "Registration"?

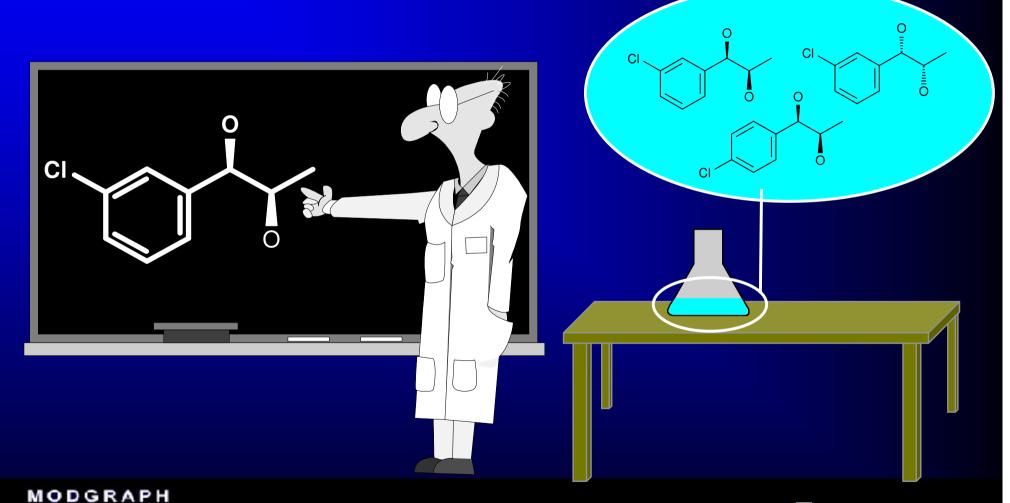
- Standardise the representation of chemical structures
- Arranging data into a hierarchy
- Check novelty of a compound
- Assign different identifiers to different chemical structures

Criteria for novelty (1)

The simple stuff is straight-forward :

- Different chemical structure = novel
- Different enantiomer = novel
- Different geometric isomer = novel

Criteria for novelty (2)


But in reality, things are more complicated :

- Mixtures of different chemical structures = ?
- Mixtures of stereoisomers = ?
- Uncertainty in chemical structures = ?
- Uncertainty in stereoisomerism = ?

Chemical and Stereochemical Uncertainty

Chemical and Stereochemical Uncertainty (2)

"It's mainly the 'R' isomer"

"The groups are relatively trans to each other"

"It's one isomer - I don't know which one"

"It's something I scraped off the bench"

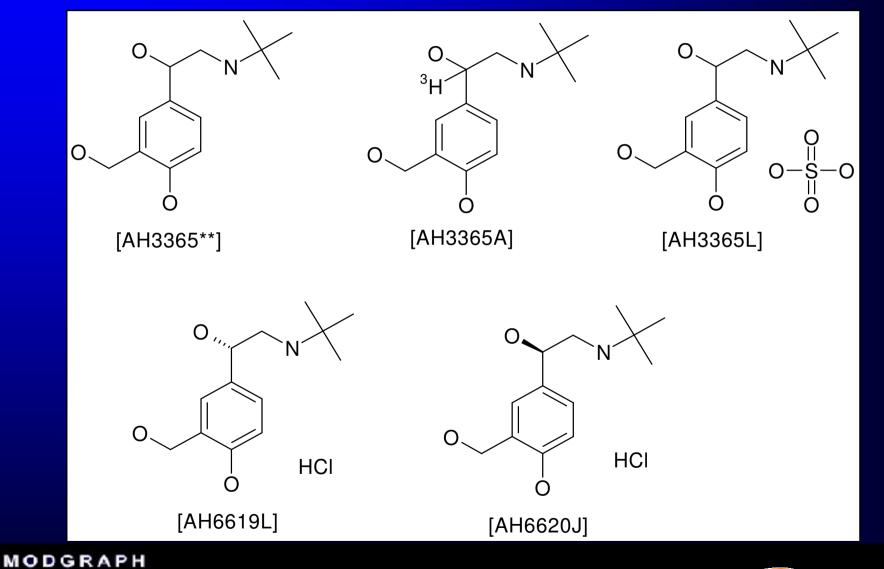
The answer = Business Rules

- The foundation of any registration system
- Must be fully defined early on
- To be decided by the scientists (as they have to live with them !)

GSK Business Rules

- Defined >20 years ago
- Integral part of the GSK Registry system
- Defined ranges for mixtures of different structures or stereoisomers
- Handles uncertainty in structure or stereochemistry

What do we mean by "Registration" ?

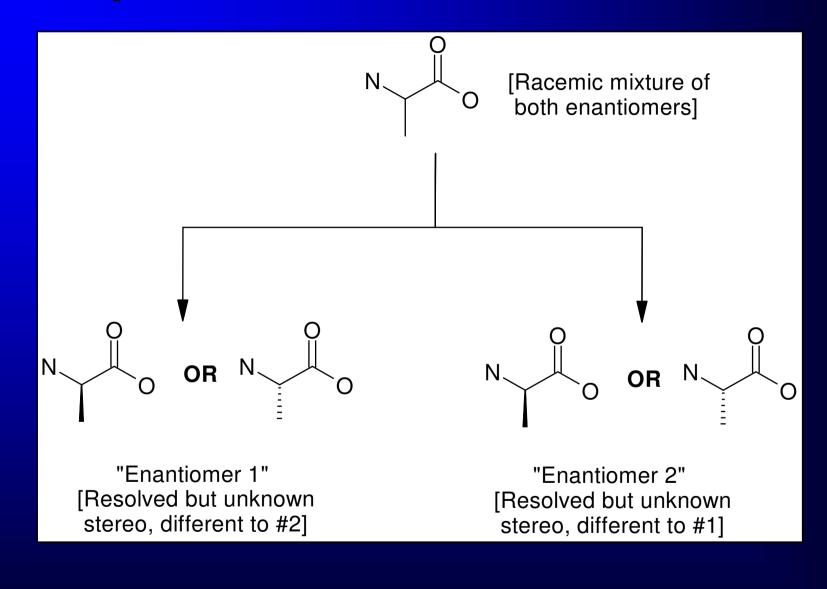

- Standardise the representation of chemical structures
- Arranging data into a hierarchy
- Check novelty of a compound

 Assign different identifiers to different chemical structures

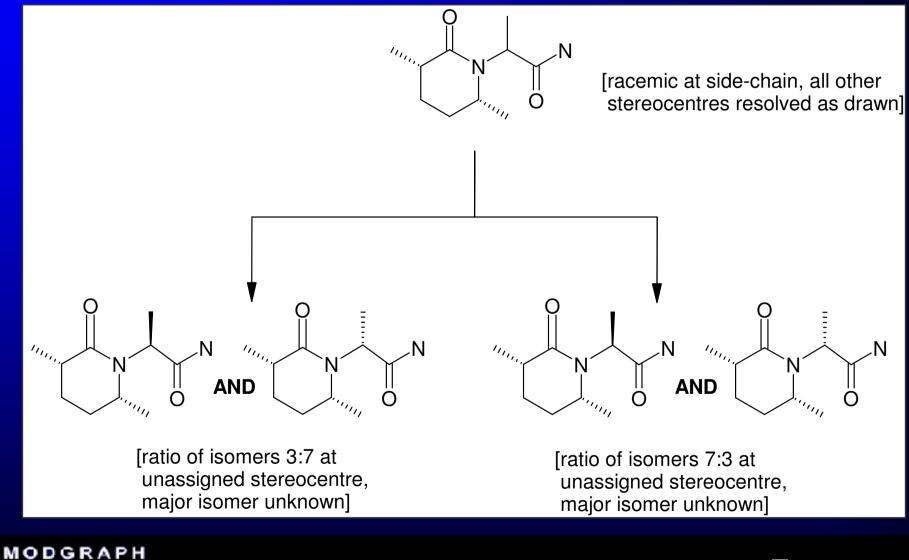
Assigning identifiers to chemical substances

High Throughput Chemistry

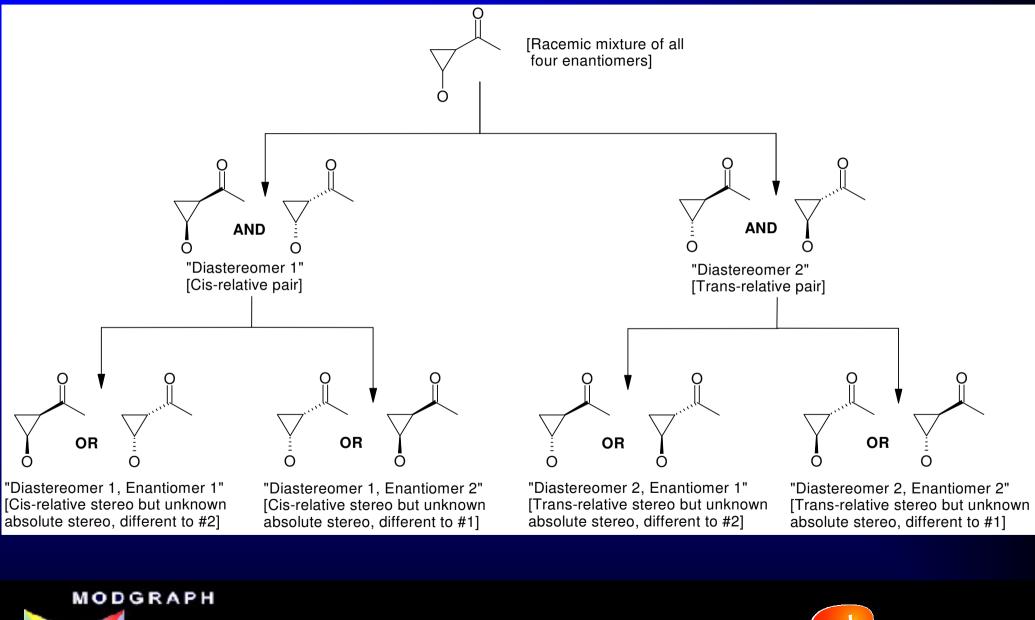
High volumes
Lower quality ?
Should these be "registered" ?


Quantitative chiral chromatography

Used to separate stereoisomers
Gives "pure" isomers of unknown stereochemistry
How are these to be registered ?


Separation of stereoisomers (1)

MODGRAPH

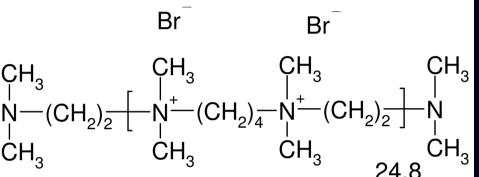

Separation of stereoisomers (2)

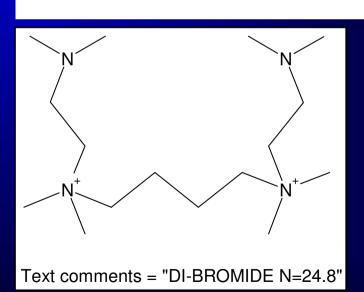
Separation of stereoisomers (3)

"End-User Registration" - electronic submission or fully automated registration ?

GSK approach :

- All compounds submitted electronically
- Simple compounds registered automatically
- All others registered by full-time registrars




Electronic data capture

Need better methods of representing uncertainly in chemical structures (more like the way chemists draw things)

Structure as drawn in chemists hard-copy lab notebook

Structure as represented in a database (not GSK registry !)

Amendments - "Everything must change"

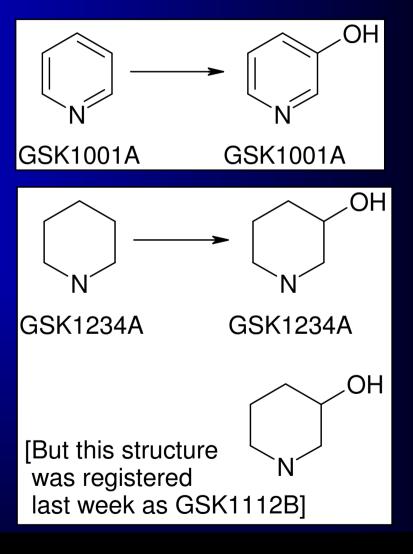
- Registration is a sub-set of "Amendments"
- A record can be amended many times
- Full auditing is required
- Have to handle collisions

Types of amendments

Change the lab-notebook reference

- Modify a version record
- Modify a parent structure
- Move a preparation

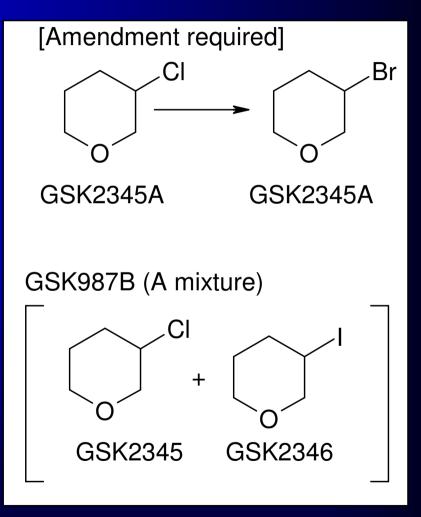
"Delete" data



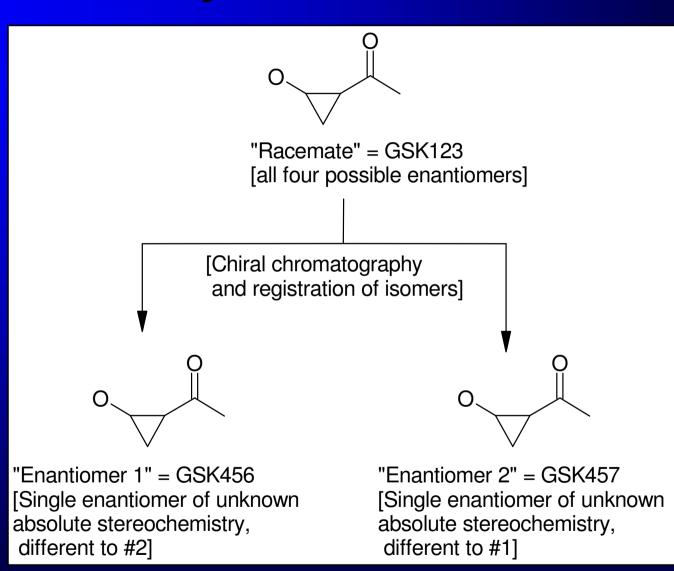
Modifying structures (1)

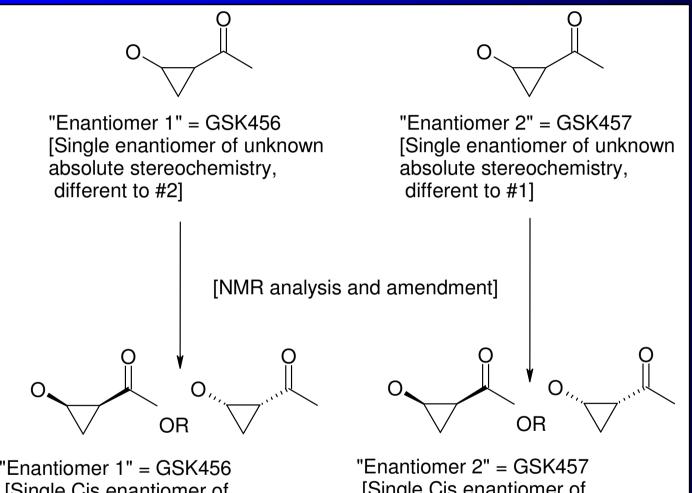
Simple (no collision)

 Amended structure already registered



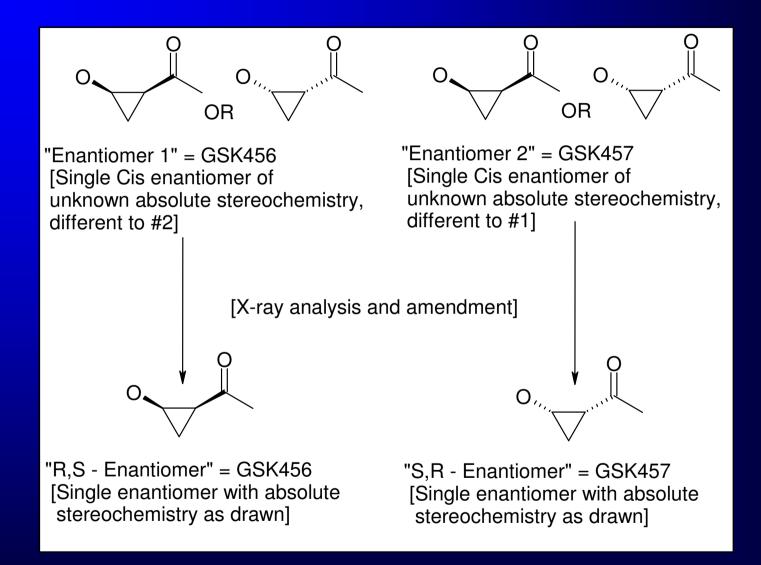
Modifying structures (2)


Amending components of "mixture" records


Repeated analysis and amendments (1)

MODGRAPH

Repeated analysis and amendments (2)



"Enantiomer 1" = GSK456 [Single Cis enantiomer of unknown absolute stereochemistry, different to #2] 'Enantiomer 2" = GSK457 [Single Cis enantiomer of unknown absolute stereochemistry, different to #1]

Repeated analysis and amendments (3)

Some Aspects of the solution

Rashmi Mistry

Some Aspects of the solution

- Normalisation and Standardisation/ Representation of chemical substances
- Data Model to represent the hierarchy (with examples)
- Rules for atom/bond centred data
- Data Model to represent Atom and Bond centred information (with examples)
- Data Model to represent Data and Structure Amendments
- Representation of Data and Structure on Collisions
- Extensions to SMILES to hold Structure Related information

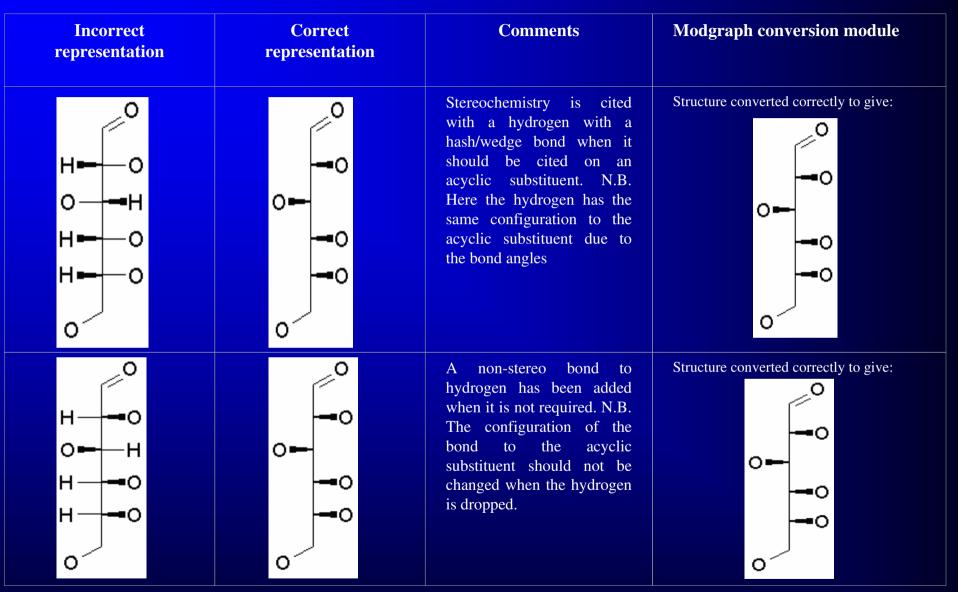
Normalisation and Standardisation / Representation of chemical substances

- Charge connectivity table for defining the charge connectivity of each atom in the P-Table (A default set is provided with the system)
- User defined Salt/Solvate dictionary (A default set is provided)
- Data normalisation (like Nitro groups), defined as SMARTS data
- Normalisation of drawing conventions (i.e. citing of stereo bonds, drawing bridge structures)

Normalisation of drawing conventions

Incorrect representation	Correct representation	Comments	Modgraph conversion module
OH	OH H H	Stereochemistry is cited within a ring when it should be cited by adding a hydrogen with a hash/wedge bond	Structure converted correctly to give: OH F H
CH3	CH3	Stereochemistry is cited within a ring when it should be cited on an acyclic substituent	Structure converted correctly to give:
CH ₃ OH CH ₃		There are two thin ends of Hash/Wedge bonds at one atom. It should be cited with the minimum number of hash/wedge bonds.	Structure converted correctly to give:

MODGRAPH


Normalisation of drawing conventions

Incorrect representation	Correct representation	Comments	Modgraph conversion module
	The inter- conversion should fail.	There are two thin ends of a Hash bond at one atom. This does not make sense so the conversion should fail	<u>As required,</u> the inter-conversion failed.
		Stereochemistry is cited with both the thin end and the thick end of two hash/wedge bonds at the same atom. It should be cited by adding a hydrogen with a hash/wedge bond	Structure converted correctly to give: OH OH H H CI
	OH ,,,OH	There are two thin ends of Hash/Wedge bonds at one atom. It should be cited with the minimum number of hash/wedge bonds.	Structure converted correctly to give:

Normalisation of drawing conventions

Data Model to represent the hierarchy

Table:R PARENT

Name	Null?	<u>Type</u>
DB_NO	NOT NULL	NUMBER
SMILES	NOT NULL	VARCHAR
PCN (Parent Compound Number)	NOT NULL	VARCHAR
Table:R VERSION		
Name	Null?	Type
Name DB_NO	Null? NOT NULL	<u>Type</u> NUMBER
DB_NO	NOT NULL	NUMBER
DB_NO SMILES	NOT NULL NOT NULL	NUMBER VARCHAR
DB_NO SMILES PARENT_DB_NO	NOT NULL NOT NULL NOT NULL	NUMBER VARCHAR NUMBER

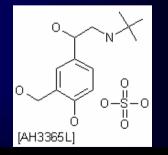
Table:R PREP

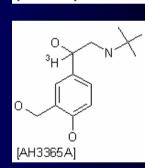
Name	Null?	<u>Type</u>
DB_NO	NOT NULL	NUMBER
VERSION_DB_NO	NOT NULL	NUMBER
LNB	NOT NULL	VARCHAR

MODGRAPH

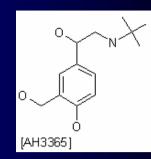
MODG

Table:R PARENT


Name


DB_NO	2311	
SMILES	"CC(C)(C)NCC(O)c1ccc(O)c(CO)c1"	
PCN (Parent Compound Number)	"AH3365"	
Table:R_VERSION		
Name	Value	
DB_NO	2312	
SMILES	"CC(C)(C)NCC(O)c1ccc(O)c(CO)c1"	
PARENT_DB_NO	2311	
REGNO (Registration Number)	"AH3365**"	
SALT_INFO	""	
DB_NO	2313	
SMILES	"[3H]C(O)(CNC(C)(C)C)c1ccc(O)c(CO)c1"	
PARENT_DB_NO	2311	
REGNO (Registration Number)	"AH3365A"	
SALT_INFO	""	
DB_NO	2314	
SMILES	"CC(C)(C)NCC(O)c1ccc(O)c(CO)c1.OS(=O)(=O)O"	
PARENT_DB_NO	2311	
REGNO (Registration Number)	"AH3365L"	
SALT_INFO	"9,1"	
ODGRABH		


Value


Example 1a

Rules for atom/bond centred data

 Allows the user to annotate the molecule with specific symbols that are defined by the business rules

Atom symbols are:-

•"*" To represent a fully resolved atom centre

 "M" To represent a mixture of enantiomers in a specified range A%-B%

•"U" To represent resolved chiral centres (A%-B%) at which the absolute stereochemistry is unknown, with an Isomer N text.

Bond symbols are:-

•"M" To represent a E/Z mixture about a double bond in a specified range A%-B%

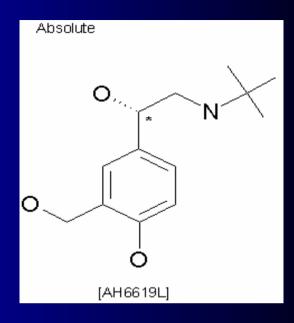
•"U" To represent unknown configurations

•"X" To represent mixture of geometric isomers <> A%-B%

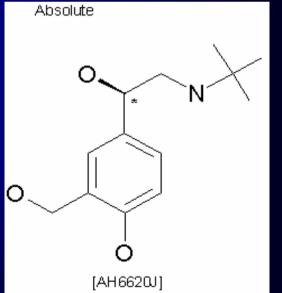
Data Model to represent Atom and Bond centred information

Table:R PARENT

Name	Null?	Туре
DB_NO	NOT NULL	NUMBER
SMILES	NOT NULL	VARCHAR
PCN (Parent Compound Number)	NOT NULL	VARCHAR
ABSOLUTE_FLAG		VARCHAR
ISOMER_ID		NUMBER
ISOMER_RANGE		NUMBER
ACD (Atom Centred Data)		VARCHAR
BCD (Bond Centred Data)		VARCHAR



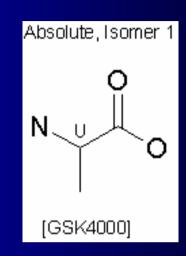
Example 1a


Table:R PARENT

Name	Value
DB_NO	2320
SMILES	"CC(C)(C)NC[C@@H](O)c1ccc(O)c(CO)c1"
PCN (Parent Compound Number)	"AH6619"
ABSOLUTE_FLAG	" T "
ISOMER_ID	0
ISOMER_RANGE	0
ACD	"6,1 "
BCD	" "

Name	Value
DB_NO	2321
SMILES	"CC(C)((
PCN (Parent Compound Number)	"AH6620
ABSOLUTE_FLAG	" T "
ISOMER_ID	0
ISOMER_RANGE	0
ACD	"6,1 "
BCD	""

<u>Value</u>
2321
'CC(C)(C)NC[C@H](O)c1ccc(O)c(CO)c1"
'AH6620"
" T "
)
)
'6,1 "
6 93



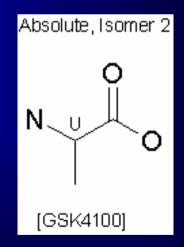
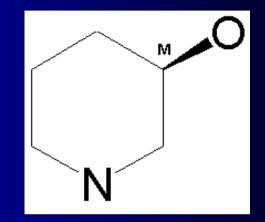

Example 2

Table:R PARENT

Name	Value
DB_NO	3000
SMILES	"CC(N)C(=O)O"
PCN (Parent Compound Number)	"GSK4000"
ABSOLUTE_FLAG	" T "
ISOMER_ID	1
ISOMER_RANGE	0
ACD	"1,3"
BCD	66 BB

Name	Value
DB_NO	3010
SMILES	"CC(N)C(=O)O"
PCN (Parent Compound Number)	"GSK4100"
ABSOLUTE_FLAG	" T "
ISOMER_ID	2
ISOMER_RANGE	0
ACD	"1,3 "
BCD	cc 33


MODGRAPH

Example 3

Table:R PARENT

Name	Value
DB_NO	5340
SMILES	"O[C@@H]1CCCNC1"
PCN (Parent Compound Number)	"GSK5000"
ABSOLUTE_FLAG	££33
ISOMER_ID	0
ISOMER_RANGE	0
ACD	"1,2"
BCD	66 - 93

This display represents a mixture of enantiomers in which the predominant isomer is present in the range A%-B%. The configuration of the predominant isomer is known and is therefore drawn.

Example 4

Table:R PARENT

A mixture of enantiomers is present, the major of which falls within the range A%-B%. Since the identity of the predominant isomer is unknown normal bonds are used in the display with a compulsory text field descriptor ISOMER n.

Data Model to represent Data and Structure Amendments

Each of the Parent, Version and Preparation tables are duplicated as audit tables

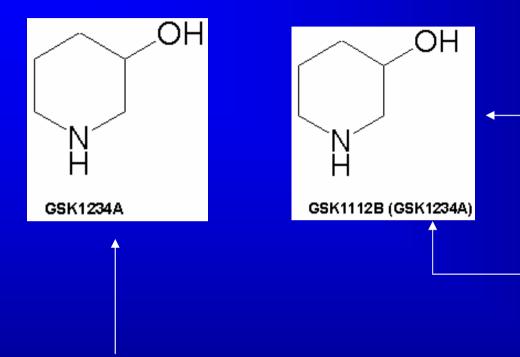
The system performs Oracle row level auditing

Any data/structure change at any level in the hierarchy is simply copied into the audit table

Representation of Data and Structure on Collisions

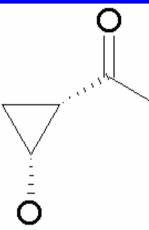
Collisions need to be handled both at Parent, Version

The system has record status that enables this to be managed, this status is known as 'Preferred/'Non Preferred'

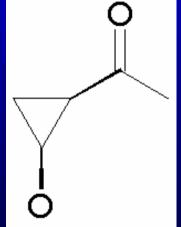

The assignment of 'Preferred/'Non Preferred' is a business process.

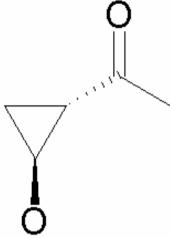
 A 'Preferred' structure may have many 'Non Preferred' structures

Preferred Non Preferred Example

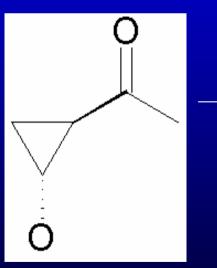

This is the 'Non Preferred' compound

Has reference to the preferred compound (GSK1234A)

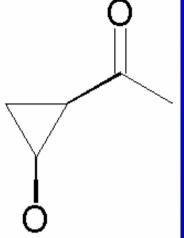

This is the 'Preferred' compound

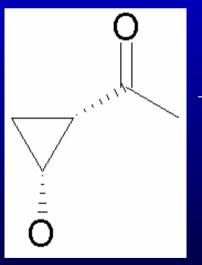

Fully resolved molecule (hash bonds)
SMILES: CC(=O)[C@H]1C[C@H]10

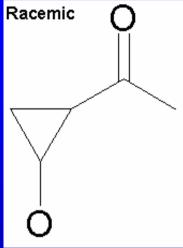
Fully resolved molecule (wedge bonds)
SMILES: CC(=O)[C@@H]1C[C@@H]10



Trans-Relative stereo SMILES: CC(=O)[C#H:1]1C[C##H:1]10 ↑


(User the '#' symbol ?)-


The other enantiomer would generate the same canonical SMILES


Cis-Relative stereo SMILES: CC(=O)[C#H:1]1C[C#H:1]10

The other enantiomer would generate the same canonical SMILES

Racemic mixture of all four enentimers SMILES: CC(=O)[C^H]1C[C^H]1O (User the '^' symbol?)

Unknown stereo would continue to be represented by the flat canonical SMILES

SMILES: CC(=O)C1CC1O

Sulfur and Phosphourus Stereochemistry

When can we have this please?

Acknowledgements

John Hollerton, GSK
John Bradshaw, Daylight
Daylight team

