

Design of a Compound Screening Collection

> Gavin Harper Cheminformatics, Stevenage

In the Past...

- Scientists chose what molecules to make
- They tested the molecules for relevant activity

Now...

 We often screen a whole corporate collection - 10⁵-10⁶ compounds

But we choose what's in the collection

If the collection doesn't have the right molecules in it
 we fail

"Screen MORE"

Everything'll be fineWe'll find lots of hits

Not borne out by our experience

How do I design a collection? - 1

Pick the right kind of molecules

- hits similar biological targets
- computational (in-silico) model predicts activity at right kind of target for given class of molecules
- exclude molecules that fail simple chemical or property filters known to be important for "drugs"

FOCUS!

How do I design a collection? - 2

- Cover all the options
- Pick as "diverse" a set of molecules as possible
- If there's an active region of chemical space, we should have it covered

DIVERSE SELECTION

- opposite extreme to focused selection

Basic Idea of Our Model

- Relate biological similarity to chemical similarity
- Use a realistic objective
 - maximize number of lead series found in HTS
- Build a mathematical model on minimal assumptions
- \Rightarrow How does our collection perform now in HTS?
 - relate this to our model
- \Rightarrow Learn what we need to make/purchase for HTS to find more leads

A "simple" model

Chemical space is clustered (partitioned)

- there are various possible ways to do this
- For a given screen, each cluster *i* has
 - a probability π_i that it contains a lead
- If we sample a random compound from a cluster containing a lead, the compound has
 - a probability α_i that it shows up as a hit in the screen
- If we find a hit in the cluster, that's enough to get us to the lead

And in pictures...

$\alpha_i = Pr(dot is green)$

Constrained Optimization Problem

Suppose that we want to construct a screening collection of fixed size M

To maximize expected number of lead series found we have to

(P)
Maximize
$$\sum_{i=1}^{p} \pi_i [1 - (1 - \alpha_i)^{N_i}]$$

subject to $\sum_{i=1}^{p} N_i = M$

Solution

- If we know very little (α_i, π_i equal for all i)
 - select the same number from each cluster diversity solution
- If e.g. we know some clusters are far more likely than others to contain leads for a target
 - select compounds only from these clusters focused solution (filters)
- <u>But</u> we also have a solution for all the situations in between, where there is a balance between diversity and focus

Immediate Impact

Improved "diversity" score

$$D(\{N_i\}_{i=1}^p) = \sum_{i=1}^p [1 - (1 - \alpha)^{N_i}]$$

- Use in assessing collections for acquisition
- We have integrated this score into our Multi-Objective Library Design Package

* Gillett et al., J. Chem. Inf. Comp. Sci. 2002, 42, 375-385.

What value should α take?

- Determining a value of α is important. We can cluster molecules using a variety of methods.
- Fortunately, there is a recent paper from Abbott which answers this question
- In 115 HTS assays, with a TIGHT 2-D clustering, $\alpha \sim 0.3$
 - consistent: mostly varies between 0.2 and 0.4
- This agrees well with our experience
- In practice we use this (Taylor-Butina) clustering with radius 0.85 and using Daylight fingerprints
 - * Martin et al., J. Med. Chem. 2002, 45, 4350-4358.
- A consistent value of α is necessary, irrespective of cluster
- Otherwise, very difficult to parameterise model accurately

The Rights of a Molecule

Every molecule has the right to be treated equally

- The probability of similar biological activity at similarity x should be the same, independent of bit density (or any other global properties)
- Our limited experience suggests larger molecules may be less likely than small molecules to be active using our 0.85-radius clustering
- Needs further exploration
 - But would we expect this to happen?

Recent papers: bit density vs similarity

- Flower: JCICS 48, 379-386 (1998)
- Fligner et al. Technometrics 44, 110-119 (2002)*
- Holliday et al. JCICS 43, 819-828 (2003)
- * In Fligner et al., they propose a simple random model.
 - Compare 2 molecules of same bit density:
 - Under model, expected Tanimoto similarity is approx p/(2-p)
 - where p is proportion of bits set
 - More dense bit strings
 - higher Tanimoto similarity

But it doesn't just matter for my model!

- Papers were mainly concerned with dissimilarity problems
 - Easier to find low bit density compounds with near-zero similarity to existing compounds
 - Sequential dissimilarity-based selection bias
- But consider similarity searching with multiple queries.

Life would be easier if...

Applications

- Compound acquisition
- Library design
- Strategic Decision-Making Tool
 - Resource allocation what to buy, what to make.
 - What targets to screen
- Prioritisation of hits in virtual screening
 - Similarity searching
 - Pharmacophore searching?
 - Docking?
- Others?...

Acknowledgements

- Stephen Pickett
- Darren Green
- Jameed Hussain
- Andrew Leach
- Andy Whittington

* Harper et al., Combinatorial Chemistry and High Throughput Screening 2004, 7, 63-70.

