Performance of Kier-Hall E-states descriptors in QSAR of multi-functional molecules

Darko Butina ChemoMine Consultancy

ChemoMine

Kier-Hall E-state descriptors

- Pharm.Res. 1990, 7, 801-807
- JCICS 1991, 31, 76-82
- $I=(\delta^V+1)/\delta$
 - δ^V and δ are counts of valence and sigma electrons of atoms associated with the molecular skeleton
- $S_i = I_i + \Delta I_i$
 - E-state value, S_i, for skeletal atom I
- Δli , is given as $\Sigma(l_i l_j)/r_{ij}^2$

Intrinsic-State Values

atom	The states
(skeletal hydride group)	intrinsic-state value
)C(1.250
)CH-	1.333
-CH2-	1.500
)C=	1.667
-CH ₃ , =CH-,)N-	2.000
===	2.500
=CH ₂ , =N-	3.000
-0-	3.500
$\equiv CH, -NH_2$	4.000
=NH	5.000
≡N, -OH	6.000
=0	7.000
-F	8.000
-Cl	4.111
-Br	2.750
-1 200	2.120
=S	3.667
-SH	3.222
-S-	1.833

Kier-Hall Atom Types

RowNo	atom-types-Kier-Hal	RowNo	atom-types-Kier-Hal
1	sOH	19	ddssS
2	Ob	20	sF
3	ssO	21	sCl
4	aaO	22	sBr
5	sNH2	23	s
6	dNH	24	sCH3
7	ssNH	25	ssCH2
8	aaNH	26	dCH2
9	tN		sssCH1
10	dsN	28	dsCH1
11	aaN	29	tCH
12	sssN	30	aaCH
13	ddsN	31	aasC
14	ssssN+	32	ddC
15	sSH		tsC
16	dS	34	dssC
17	ssS	35	ssssC
18	aaS		

ChemoMine

Kier-Hall Algorithm

	OGICAL STATE			2			31, No. 1, 1991 79
II. Electr	otopological-State	Calculations for	Alanine	and the second	West strong the strong the		
	unselo sheri ranco	Steel States		O.			
			1	01			
			H ₃ C				
	Contraction of the second		store and the local sector	5 NH2			
emaile .s	intrinsic values	11010	int	rinsic values	North Contraction	intrinsic	values
1000	/(1) = 2.000	an el Breiti		3) = 1.667	and the states of the states o	1(5) =	
	I(2) = 1.333		I(4) = 6.000		<i>I</i> (6) =	7.000
			(1, -	$I_j)/r_0^2$ Matrix			
)	AL and the Real of		$\Delta I =$
1	1	2	3	4	5	6	row sum
1	0.0	0.1667	0.0370	-0.2500	-0.2222	-0.3125	-0.5810
2	-0.1667	0.0	-0.083	-0.5185	-0.6667	-0.6296	-2.0648
3	-0.0370	0.0833	0.0	-1.0833	-0.2593	-1.3333	-2.6296
4	0.2500	0.5185	1.0833	0.0	0.1250	-0.1111	1.8657
5	0.2222	0.6667	0.2593	-0.1250	0.0	-0.1875	0.8356
6	0.3125	0.6296	1.3333	0.1111	0.1875	0.0	2.5741
							0.0000
			S	$I_{i} = I_{i} + \Delta I_{I}$			
				Q 9.574			
			1 410 11	C C -0.963			
			1.419 H ₃				
			-0.7	731 CH OH 7.8	00		

QSAR example 1

the benzodiazepine receptor and electrotopological state values

Table 6.	Binding of	beta-carbo	tilles to	Tite-	Centres
----------	------------	------------	-----------	-------	---------

	Н	1.1.212	1940		12.	S(CO) ^b	S(NN)	S(C14)	pICso	Calc ^d	Res ^e
Obs R ₁	R ₃	R4.*	R ₅		R ₇	0.930	3.828	1.555	- 0.450	-1,166	0.716
1 CH ₃ 2 CH ₃ 3 CH ₃ 4 H 5 H 6 H 7 H 8 H 9 H 10 H 11 H 12 CH 13 CH 14 H 15 H		H H H H H C ₂ H ₅ CH ₂ OCH ₃ CH ₃ CH ₃ H H ₂ H ₂ CH ₂ OCH ₃ H	оН Н Н Н Н Н Н ОСН ₂ С ₆ Н, О-iС ₃ Н, Н Н Н Н Н	H H H H H OCH ₃ H H H H H H H H H H H H H H H H H H H	OCH ₃ OH H H H OCH, H H H OCH ₃ OH	0.921 0.902 4.867 5.872 5.997 6.082 6.162 6.360 6.225 5.934 0.451 0.434 6.335 0.911 5.448	3.831 3.748 3.712 3.658 3.688 3.711 3.787 3.850 3.800 3.661 3.947 3.864 3.836 3.696 3.530	1.946	- 1.980 - 1.900 1.591 2.097 2.155 1.921 2.400 2.959 2.960 1.780 - 2.813 - 2.748 2.959 - 1.000 - 1.491	2.703	0.605 -0.381 0.399 -0.123 -0.78 0.25 0.08 0.64 0.04 -1.10 0.22 0.25 0.59 -0.66

b. $S(CO) = (S(C_3) + S(O))/2$; S(O) is the E-state value for the oxygen attached to the carbon atom in the substituent on position 3. See text.

 $S(NN) = (S(N_2) + S(N_9))/2$. See text. $S(C_{14}) = (S(C_1) + S(C_4))/2$. See text.

c. The negative log of the IC30 value for binding.

d. Calc is the value computed for pIC₅₀ from Eq. 9.

e. Res = $Calc - pIC_{50}$.

QSAR example 2

Table 5. Hydrazide monoamine oxidase inhibitors and their electrotopological state values

Obs	R ₁	R ₂	R ₃	R4	R5	R ₆	S(CH14)ª	S(NH11) ^b	pIC ₅₀ °	Calc ^d	Res
1	H	Н	Н	H	Н	CH(CH ₃) ₂	1.943	2.538	5.42	5.42	0.00
2	CI	H	H	H	Н	CH(CH ₃) ₂	1.926	2.515	5.60	5.66	-0.06
3	H	CI	Н	Н	H	CH(CH ₃) ₂	1.929	2.520	5.40	5.61	-0.21
4	Н	H	Cl	Н	Н	CH(CH ₃) ₂	1.931	2.524	5.96	5.57	0.39
5	CH3	Н	Н	H	H	CH(CH ₃) ₂	1.947	2.558	5.54	5.22	0.32
67	H	CH3	Н	H	H	CH(CH ₃) ₂	1.946	2.553	5.05	5.27	-0.22
7	H	H	CH ₃	Н	H	CH(CH ₃) ₂	1.946	2.550	5.40	5.30	0.10
8	OCH ₃	H	Н	H	Н	CH(CH ₁) ₂	1.932	2.535	5.62	5.47	0.15
9	H	OCH ₃	H	H	Н	CH(CH ₃) ₂	1.934	2.536	5.42	5.45	-0.03
10	H	H	OCH3	H	Н	CH(CH ₃) ₂	1.935	2.536	5.52	5.45	0.07
11	Н	H	Н	H	CH ₃	CH(CH ₃) ₂	1.947	2.588	5.00	4.94	0.06
12	CI	H	H	H	CH ₁	CH(CH ₃) ₂	1.930	2.565	5.16	5.19	-0.03
13	Н	CI	H	H	CH,	CH(CH ₁) ₂	1.933	2.570	4.96	5.13	-0.17
14	Н	H	CI	H	CH ₁	CH(CH ₁) ₂	1.936	2.573	5.00	5.10	-0.10
15	H	H	H	CH ₃	CH ₁	CH(CH ₁) ₁	1.950	2.629	4.34	4.55	-0.21
16	Н	Н	CI	CH,	CH ₁	CH(CH ₁) ₂	1.938	2.614	4.80	4.71	0.09
17	Н	CH ₃	H	H	CH ₃	CH(CH ₃) ₂	1.951	2.603	4.90	4.79	0.11
18	H	Н	H	H	Н	C ₂ H ₅	1.901	2.489	5.82	5.95	-0.13
19	Н	Н	CI	H	Н	C ₂ H ₅	1.889	2.474	6.00	6.12	-0.12
20	Н	н	H	H	Н	CH2C6H	1.103	2.587	6.14	6.44	-0.30
21	H	Н	H	Н	Н	CH(CH3)C6H5	1.108	2.637	5.70	5.96	-0.26
22	Н	Н	CH ₃	H	Н	CH(CH ₃)C ₆ H ₅	1.109	2.649	6.05	5.85	0.20
23	Н	Н	OCH,	H	Н	CH(CH)C,H,	1.096	2.635	6.00	6.00	-0.00
24	H	Н	CI	H	Н	CH2C6H3	1.089	2.573	6.96	6.60	0.36

a. S(CH14) is the E-state value for the first carbon in the substituent R6.

b. S(NH11) is the E-state value for the NH adjacent to the carbonyl group of the hydrazide funtional group.

c. pIC₅₀ is the negative log of the inhibitory power IC₅₀(µM).

d. Calc is the calculated activity (pIC_{50}) from Eq. 8. e. Res. = pIC_{50} - Calc. What to assign as E-sate value of the atom type not present?

- E-state value of '0' is valid result so reporting value of '0' for missing atom type should not be used (as in C2 – Accelyrs)
- Use of –999 as E-state value for missing atom types as input for QSAR

What are the issues with E-states and multi-functional molecules?

- 35 atom types that are the bases for calculating K-H E-sates are too general
- When dealing with QSAR for datasets where atom-by-atom matching is not possible and any given atom type hit more than once → the result is ambiguity that no statistical tool will resolve

More on ambiguity

- For example: ssNH could be part of
 - Sulphonamide, RNHSO2R and
 - Amine, RNHR
 - Same atom type, both part of the same molecule but in very different chemical environment
- What to calculate?
 - An average
 - Sum or
 - Both the sum and the average

Testing hypothesis that simple counts should do at least as good as information rich K-H E-states

- Develop the program that will read in the same atom types and do the counts
- Choose several datasets that from QSAR area that feature multi functional type of molecules
- Use the same statistical approach to compare the performance of two sets of descriptors

Protocol used for comparison

• Descriptors:

- E-state
 - 35 descriptors based on average E-state values
 - 35 descriptors based on sum of E-states
- Counts
 - 35 based on the counts of K-H –state atom types

Datasets

- logP*, aqueous solubility, Human Intestinal Absorption and Blood Brain Barrier
- Statistical Tools
 - PCA/PLS in Simca (Umetrics)

Smarts Definitions for Kier-Hall Atom Types

	smarts-definitions	estates-atom-types-KH	RowNo smarts-definitions	estates-atom-types-KH
1	[OH1][*]	sOH	19 S(=[*])(=[*])([*])[*]	ddssS
2	O=[*]	dO	20 [F][*]	sF
3	[OH0]([*])[*]	ssO	21 [CI][*]	sCl
4	[0]	aaO	22 [Br][*]	sBr
5	[NH2][*]	sNH2	23 [I][*]	s
6	[NH1]=[*]	dNH	24 [CH3][*]	sCH3
7	[NH1]([*])[*]	ssNH	25 [CH2]([*])[*]	ssCH2
8	[nH1]	aaNH	26 [CH2]=[*]	dCH2
9	N#[*]	tN	27 [CH1]([*])([*])[*]	sssCH1
10	[ND2](=[*])[*]	dsN	28 [CH1](=[*])[*]	dsCH1
11	[nH0]	aaN	29 [CH1]#[*]	tCH
12	N([*])([*])[*]	sssN	30 [cH]	aaCH
	N(=[*])(=[*])[*]	ddsN	31 [cH0]	aasC
14	[N;+]([*])([*])([*])[*]	ssssN+	32 C(=[*])=[*]	ddC
	[SH1][*]	sSH	33 C(#[*])[*]	tsC
16	S=[*]	dS	34 C(=[*])([*])[*]	dssC
17	[SX2]([*])[*]	ssS	35 C([*])([*])([*])[*]	ssssC
18		aaS		

Calculating E-state Descriptors

Name	%F (HIA)	sOH-sum	sOH-av	dO-sum	dO-av	ssO-sum	ssO-av	aaO-sum
raffinose	0.3	108.94	9.9	-999	-999	26.46	<mark>5</mark> .29	-999
lactulose	0.6	76.52	9.56	-999	-999	15.31	5.1	-999
aztreonam	1	18.06	9.03	57.84	11.57	4.92	4.92	-999
ceftriaxone	1	9.89	9.89	62.29	12.46	4.74	4.74	-999
cefuroxime	1	9.5	9.5	47.57	11.89	9.3	4.65	5.13
kanamycin	1	70.91	10.13	-999	-999	22.2	5.55	-999

Counts of Kier-Hall Atom Types

Name	%F (HIA)	sOH	dO	ssO	aaO	sNH2	dNH	SSNH	aaNH
raffinose	0.3	11	0	5	0	0	0	0	0
lactulose	0.6	8	0	3	0	0	0	0	Q
aztreonam	1	2	5	1	0	1	0	1	0
ceftriaxone	1	1	5	1	0	1	0	1	1
cefuroxime	1	1	4	2	1	1	0	1	0
kanamycin	1	7	0	4	0	4	0	0	0

Objectives

- Compare quality of the models (R²), based on training set alone and using in-built crossvalidation Q² (LMO) within Simca
- Each of the datasets used has been analysed in the literature using similar approaches but with different descriptors
- NOT designed to build best models for those datasets

Performance of E-states vs Counts using Simca and PLS

e-states (ES)	counts of ES at-type	Performance	
R ²	R ²	(R ² (ES)-R ² (Counts))*100	
0.655	0.659	-0.4	
0.306	0.49	-18.4	
0.611	0.59	2.1	
0.42	0.718	-29.8	

Conclusions

- Simple counts of the same atom types that Kier-Hall Estate descriptors are built on work at least as good in building the models for BBB and solubility, and outperform E-states when building models for HIA and logP, 18% and 30% respectively
- Reviewing recently submitted paper on modelling aqueous solubility, authors made the following observation:
 - Replacing E-states values by binary presentation of the K-H atom types, 1 if present and 0 if not did make much difference in model performance

Acknowledgment

 Thanks to Daylight for supplying programming toolkits for coding Estates algorithm and development of software for counting atom types based on smarts definitions